Neural Network Models for Earthquake Magnitude Prediction Using Multiple seismicity Indicators
نویسندگان
چکیده
Neural networks are investigated for predicting the magnitude of the largest seismic event in the following month based on the analysis of eight mathematically computed parameters known as seismicity indicators. The indicators are selected based on the Gutenberg-Richter and characteristic earthquake magnitude distribution and also on the conclusions drawn by recent earthquake prediction studies. Since there is no known established mathematical or even empirical relationship between these indicators and the location and magnitude of a succeeding earthquake in a particular time window, the problem is modeled using three different neural networks: a feed-forward Levenberg-Marquardt backpropagation (LMBP) neural network, a recurrent neural network, and a radial basis function (RBF) neural network. Prediction accuracies of the models are evaluated using four different statistical measures: the probability of detection, the false alarm ratio, the frequency bias, and the true skill score or R score. The models are trained and tested using data for two seismically different regions: Southern California and the San Francisco bay region. Overall the recurrent neural network model yields the best prediction accuracies compared with LMBP and RBF networks. While at the present earthquake prediction cannot be made with a high degree of certainty this research provides a scientific approach for evaluating the short-term seismic hazard potential of a region.
منابع مشابه
A probabilistic neural network for earthquake magnitude prediction
A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gu...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملKalman filter and Neural Network methods for detecting irregular variations of TEC around the time of powerful Mexico (Mw=8.2) earthquake of September 08, 2017
In 98 km SW of Tres Picos in Mexico (15.022°N, 93.899°W, 47.40 km depth) a powerful earthquake of Mw=8.2 took place at 04:49:19 UTC (LT=UTC-05:00) on September 8, 2017. In this study, using three standard, classical and intelligent methods including median, Kalman filter, and Neural Network, respectively, the GPS Total Electron Content (TEC) measurements of three months were surveyed to detect ...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملShort-term earthquake prediction by reverse analysis of lithosphere dynamics
Short-term earthquake prediction, months in advance, is an elusive goal of earth sciences, of great importance for fundamental science and for disaster preparedness. Here, we describe a methodology for short-term prediction named RTP (Reverse Tracing of Precursors). Using this methodology the San Simeon earthquake in Central California (magnitude 6.5, Dec. 22, 2003) and the Tokachi-Oki earthqua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of neural systems
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2007